按:上周日(6月3日),在加利福尼亚2017年图灵奖获(2018年3月21日公布)得者Hennessy and Patterson做了图灵奖lecture :A New Golden Age for Computer Architecture: Domain-Specific Hardware/Software Co-Design, Enhanced Security, Open Instruction Sets, and Agile Chip Development。两个人因为在处理器架构的贡献,获得2017年图灵奖Pioneers of Modern Computer Architecture Receive ACM A.M. Turing Award:“Hennessy和Patterson对于微处理器的基础贡献引领了移动和物联网的发展”:

Hennessy and Patterson’s Foundational Contributions to Today’s Microprocessors Helped Usher in Mobile and IoT Revolutions
具体获奖细节请参考:2017图灵奖揭晓:两位大神携手获奖,Google成最大“赢家”。感谢郭雄飞同学帮忙把视频放到了墙内:《图灵奖演讲2018》。以下是本人笔记正文。

CPU指令集的发展

IMG_0056 演讲第一部分首先回顾了中央处理器(CPU)的指令集(ISA)的发展。指令集(ISA)是计算机的抽象,大致有三种:

早期Intel X86是CISC架构,但是从奔腾Pro开始,内部采用RISC核心。自从Intel安腾使用的VLIM失败后,最近15年内都没有新的通用处理器再使用VLIM。市场上99%以上处理器都是RISC(数据来源,演讲24分10秒)。

目前处理器面临的挑战

Dennard scaling描述了当晶体管尺寸越来越小的时候,电源密度是不变的,也就是同样尺寸芯片下面可以有更高的性能。由于半导体工艺的限制,随着晶体管尺寸的缩小,电源功耗并不会降低。Dennard scaling已经失效了。

同样的,摩尔定律也由于工艺的限制失效了。处理器性能的年增长已经由最高的52%降到2015年以后的3%。

如果飞机像软件一样,经常出功能异常(malfunction)的话,除了在加利福尼亚的人,没有人能参加今天的会议。

历史上人们想了很多手段去改善系统的安全。最开始我们认为这个应该可以从软件层面完全解决,但是遗憾的是软件层面没有办法解决全部问题(例如今年发现的五个幽灵/熔断漏洞:1,2,3,3a和4)。所以安全需要硬件的参与!

以40年以前开始发展的x86架构为例,当前的安全状况:

第二部分的结论。

如何解决上述问题?

解决问题的思路有三个,软件,硬件,或软件硬件协同。

从上面例子可以看到,与通用的脚本语言python,相比更多的软硬件结合的优化可以做到6万倍的性能提升。

特定领域架构与特定领域语言

上面对特定领域优化的例子,引出DSA(领域特定架构):

机器学习论文增长的速度和摩尔定律的速度是一样的。

IMG_0073 作者认为的方向就是垂直整合。

RISC-V考虑到DSA需求,预留了大量的op code。

另一个例子是英伟达的深度学习加速器。

增强安全

安全要求是无后门,可以从控制整个硬件。RISC-V很可能是第一个进行软硬件协同设计的架构。

自由和开放的架构以及开源实现

敏捷芯片开发

chisel是一个模块化的硬件设计语言,助力硬件的敏捷开发。上图是不同RISC-V处理器的代码复用情况。

你可能感兴趣的文章

这是本月的第一篇文章。半瓦平时有随手记笔记的习惯,公众号原创文章只分享自己有体会的信息,希望能促进价值信息流动。任何建议欢迎给我留言或添加我的微信(公众号回复“微信”,可以看到半瓦的微信):

参考链接

其它